Functional Programming
In TypeScript

Writing type-safe(r) code

About me

Principal engineer @ cascade.app (strategy software for planning and execution)
PhD. in Computational Biochemistry
10+ years of experience as a software engineer

Have worked in:

o GIS (Geographical Information System)
o FinTech (founder)
o SaaS

e 6+ year of experience in TypeScript

e [P enthusiast
o Going to BFPG for ~8 years

Context: Increasing popularity of JS and TS

[Source: StackOverflow 2024 Developer Survey, 65k respondents)

e 62.3% of developers have used JavaScript in the past year

e 38.5% of developers have used TypeScript in the past year
o 5th most popular after JS (1), HTML/CSS (2), PY (3) and SQL (4)

A crash course in TS for FP enthusiasts

A primer on TypeScript: Primitive types

Primitive values

const A: string “Hello, BFPG”
const B: number 42
const C: boolean = true

Special types + values

const a: null = null

const b: undefined = undefined

const c: any = 42

const d: unknown = 42

const e: never = true // — Compiler error, never does not have any members

const fail = (): never => {
throw new Error('ERROR!")

}
const exhaustiveUnion = (x: ‘a’) => {

if (x === 'a’) { return "HELLO'}

else { console.log(S${x satisfies never})} // — Compiler will throw an error x: ‘a
lb'

}

A primer on TypeScript.: Composite types

e Objects

type animal = {
name: string
age: number
vaccinated: boolean

}
e Arrays/ Tuples

type X = string[]
type Y = [string, boolean]

e Functions

type F = (a: number, b: boolean) => [string, string]

FP concepts in TS: Algebraic data types

e Sum types
const maybeA: null | string = “hello”
e Discriminated type unions

type Animal = {type: ‘dog’, name: ‘rex’ | ‘red’} | {type: ‘cat’,
age: number}

e Product types

type A = { a: string}
type B { b: boolean}
const d: A & B = {a: ‘Hello”, b: 42}

e Generics

type Maybe<T> = T | undefined

FP concepts in TS: Generics, type mappers, ternaries

e Generics
type Maybe<T> = T | undefined
e Type mappers (“type functions”)

type MaybeObject<T extends object> = {
[key in keyof T]: T[key] | undefined
}

e Ternary expressions

type MaybeBooleanObject<T extends objects> = {
[key in keyof T]: T[key] extends boolean ? boolean | undefined : T[key]
}

FP concepts in TS: Recursive types

e Recursive types™® (* with some caveats, limited recursion depth)

type Node = {
value: number;
children: Node[];

|2

https://www.richard-towers.com/2023/03/11/typescripting-the-technical-interview.html

type SolveNextRow<row, placedQueens> =
Solve<Next<S<row>, placedQueens>, S<row>, placedQueens>

type Solve<candidates, row, placedQueens> = Equals<row, N> extends True
? candidates extends Cons<infer x, any>
? Cons<x, placedQueens>
: Nil
: candidates extends Cons<infer x, infer xs>
? SolveNextRow<row, Cons<x, placedQueens>> extends Nil
? Solve<xs, row, placedQueens>
: SolveNextRow<row, Cons<x, placedQueens>>
: Nil

https://www.richard-towers.com/2023/03/11/typescripting-the-technical-interview.html

Some extra oddities: Template literals, enums

e Template literals

type EmailType = ‘welcome’ | ‘unsubscribe’

type EmailRegion = ‘AU’ | ‘US’

type Emailld = “S{EmailType}:S{EmailRegion}"

// ‘welcome:AU’ | ‘unsubscribe:AU’ | ‘welcome:US’ | ‘unsubscribe:US’
e Enums

enum UserType {
Admin = ‘Admin’,
Viewer = ‘Viewer',

}

// Both a const, and a type!

const mapping: Record<UserType, number> = {
[UserType.Admin]: 1,
[UserType.Viewer]: 2,

Example of cool TS type tricks

e Type function that reverse an arbitrary tuple

type Reverse<T extends unknown[]> = T extends [...infer U, infer P]
? [P, ...Reverse<U>]

[]

type MyTuple = [string, boolean, number]
type ReversedTuple = Reverse<MyTuple> // — [number, boolean, string]

https://qgithub.com/bertrand-caron/ts-challenges
https://github.com/type-challenges/type-challenges

https://github.com/bertrand-caron/ts-challenges
https://github.com/type-challenges/type-challenges

TypeScript: The not so good

e Al TS code is valid JS code (i.e. all the “bad” JS ideas leak into TS)

typeof null
typeof [] =

= ‘object’
‘object’

e Everything is mutable by default

const constArray: [] = []
constArray.push(1) // — Not a compiler error!

e No type level concept of runtime exception

const throwingFunction = (): boolean => {
if (Math.random() > ©.5) { return true}
else {throw new Error(‘ERROR")}

}

e No first-class level concept of 10, pure functions, side effects, etc.

No pattern matching

e Type system can be very lenient, or bent
o Type casting: [] as unknown as number (can be mitigated with linting)
o Type guards: deferring type casting logic to developers

const isBoolean = (value: unknown): value is boolean => {return true}

Some cool FP libraries in TS

fp-ts: Typed functional programming in TypeScript

Typed functional programming in TypeScript

fp-ts provides developers with popular patterns and reliable
abstractions from typed functional languages in TypeScript.

Disclaimer. Teaching functional programming is out of scope of this project, so the documentation
assumes you already know what FP is.

Core Concepts

The goal of fp-ts is to empower developers to write pure FP apps and libraries built atop higher order
abstractions. It includes the most popular data types, type classes, and abstractions from languages
like Haskell, PureScript, and Scala.

Example: Option monad in

import * as O from 'fp-ts/Option'
import { pipe } from 'fp-ts/function'

const double = (n: number): number => n * 2

export const imperative = (as: ReadonlyArray<number>) :
string => {
const head = (as: ReadonlyArray<number>): number => ({
if (as.length === 0) {
throw new Error ()
}
return as[0]
}
const inverse = (n: number): number => {
if (n === 0) {
throw new Error ()
}
return 1 / n
}
try |
return "Res is ${inverse (double (head(as)))}"
} catch
return

import * as O from 'fp-ts/Option'
import { pipe } from 'fp-ts/function'

const double = (n: number): number => n * 2

export const functional = (as: ReadonlyArray<number>) :
string => {
const head = <A>(as: ReadonlyArray<A>): O.Option<A> =>
(as.length === 0 ? O.none : O.some(as[0]))
const inverse = (n: number): O.Option<number> =>
0 ? O.none : O.some(l / n))
return pipe (
as,
head,
O.map (double),
O0.flatMap (inverse),
O.match (
() => '"no result',
(head) => "Result is ${head}’

@coderspirit/nominal: Nominal typing

@coderspirit/nominal

npm v4.1.1 | types included downloads | 1¢ nth | Snyk security monitored

Nominal provides a powerful toolkit to apply nominal typing on Typescript with zero runtime

overhead.

import { WithBrand } from '@coderspirit/nominal’

type Email = WithBrand<string, 'Email’'>
type Username = WithBrand<string, 'Username’>

const email: Email = 'admin@acme.com' as Email // Ok
const user: Username = 'admin' as Username // Ok
const text: string = email // OK

const anotherText: string = user // Ok

const eMail: Email = 'admin@acme.com' // Error, as we don't have a cast here
const mail: Email = user // Error, as the brands don't match

gvergnaud/ts-pattern: Pattern matching for TypeScript

TS-Pattern

The exhaustive Pattern Matching library for TypeScript with smart type inference.

downloadsn npm v5.4.0 Iicense-

import { match, P } from 'ts-pattern';

type Data =
| { type: 'text'; content: string }
| { type: 'img'; src: string };

type Result =
| { type: 'ok'; data: Data }
| { type: 'error'; error: Error };

const result: Result = ...;

const html = match(result)
.with({ type: 'error' }, () => <p>Oups! An error occured</p>)
.with({ type: 'ok', data: { type: 'text' } }, (res) => <p>{res.data.content}</p>)
.with({ type: 'ok', data: { type: 'img', src: P.select() } }, (src) =>)

.exhaustive();

FP in TS: My personal take

Aspect 1: Tooling

1. Rely on existing tools to improve code quality and compiler strictness
o tsconfig.json: {strict: “true, noUncheckedIndexedAccess: true}
o eslint + typescript-eslint (with “strict’ ruleset)
m Disallow type casting, etc.
m Avoid “JSisms”: Boolean casting, ==, etc.

2. Use external libraries that augment the capabilities of the language
o gvergnaud/ts-pattern (pattern matching)
o @coderspirit/nominal (nominal typing)
o fp-ts (everything else)
o [Insert your favourite validation library here]

Aspect 2: Code styling

1. Prefer immutable data structures over mutable ones
o Readonly<> (types), Object.freeze() (values)

2. Use discriminated unions to exclude impossible types

3. Limit use of OOP constructs and patterns
o Use immutable class instances (i.e. all properties are ‘readonly” and set once by the constructors)

4. Prefer expressions over statements
o reduce() or map() instead of for /while loops
o ternaries instead of if/else
o Always have matching else clause for any if statement
5. Prefer “FP-style” functions
o Write pure functions (when possible)
o Segregate impure function, and try typing them (e.g. errors as values rather than exceptions)
o Push side-effect to the boundary of the application

6. Validate your inputs and outputs!
o The type system is only as good as its weakest link!

7. Use FP architectural patterns (e.g. event sourcing) to complement your FP code

TS === great FP language?!

PROS

e Huge community === huge impact!
e Powerful and flexible type system
o Type system is turing-complete!
o Getting better everyday (very tight
release schedule!)
e Commercial language
o Good “get s**t done” to
correctness ratio (if done correctly)

CONS

Based on a weird language
o Inherits all of its idiosyncracies
Non-trivial type model (set theory)
o Weird edge cases
TS codebase is only as good as its
developers
o Language allows some very good,
but also very poor practices
o Type guards and type casting can
hide huge gaps in type safety

Thank you for your attention

Questions?

Functional paradigms > functional code?

e Correct code does not mean bug-free

e Functional paradigms help compensate for the limitation of the language
o Event sourcing: Append-only ledger of events (instead of mutable databases)

